Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 222: 105818, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38280564

RESUMO

In this research, we employed a deep reinforcement learning (RL)-based molecule design platform to generate a diverse set of compounds targeting the neuraminidase (NA) of influenza A and B viruses. A total of 60,291 compounds were generated, of which 86.5 % displayed superior physicochemical properties compared to oseltamivir. After narrowing down the selection through computational filters, nine compounds with non-sialic acid-like structures were selected for in vitro experiments. We identified two compounds, DS-22-inf-009 and DS-22-inf-021 that effectively inhibited the NAs of both influenza A and B viruses (IAV and IBV), including H275Y mutant strains at low micromolar concentrations. Molecular dynamics simulations revealed a similar pattern of interaction with amino acid residues as oseltamivir. In cell-based assays, DS-22-inf-009 and DS-22-inf-021 inhibited IAV and IBV in a dose-dependent manner with EC50 values ranging from 0.29 µM to 2.31 µM. Furthermore, animal experiments showed that both DS-22-inf-009 and DS-22-inf-021 exerted antiviral activity in mice, conferring 65 % and 85 % protection from IAV (H1N1 pdm09), and 65 % and 100 % protection from IBV (Yamagata lineage), respectively. Thus, these findings demonstrate the potential of RL to generate compounds with promising antiviral properties.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Inteligência Artificial , Proteínas Virais , Farmacorresistência Viral , Vírus da Influenza B , Neuraminidase
2.
ACS Appl Mater Interfaces ; 11(31): 27615-27623, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31310498

RESUMO

The nature of the protein corona forming on biomaterial surfaces can affect the performance of implanted devices. This study investigated the role of surface chemistry and wettability on human serum-derived protein corona formation on biomaterial surfaces and the subsequent effects on the cellular innate immune response. Plasma polymerization, a substrate-independent technique, was employed to create nanothin coatings with four specific chemical functionalities and a spectrum of surface charges and wettability. The amount and type of protein adsorbed was strongly influenced by surface chemistry and wettability but did not show any dependence on surface charge. An enhanced adsorption of the dysopsonin albumin was observed on hydrophilic carboxyl surfaces while high opsonin IgG2 adsorption was seen on hydrophobic hydrocarbon surfaces. This in turn led to a distinct immune response from macrophages; hydrophilic surfaces drove greater expression of anti-inflammatory cytokines by macrophages, whilst surface hydrophobicity caused increased production of proinflammatory signaling molecules. These findings map out a unique relationship between surface chemistry, hydrophobicity, protein corona formation, and subsequent cellular innate immune responses; the potential outcomes of these studies may be employed to tailor biomaterial surface modifications, to modulate serum protein adsorption and to achieve the desirable innate immune response to implanted biomaterials and devices.


Assuntos
Materiais Biocompatíveis , Proteínas Sanguíneas/química , Imunidade Inata/efeitos dos fármacos , Macrófagos/imunologia , Coroa de Proteína/química , Adsorção , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células THP-1
3.
Nanoscale ; 11(22): 10727-10737, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31120044

RESUMO

Targeted drug delivery mediated by nanocarriers is a major issue in modern-day medicine. Upon coming in contact with biological fluids (e.g. blood), nanocarriers are rapidly covered by biomolecules (proteins, lipids, etc.) which results in the formation of a surface layer, widely known as the biomolecular corona. The biomolecular corona subsequently confers a certain biological identity to the corona-covered nanocarriers which can be crucial during their subsequent interactions with cells or other biological entities. In contrast to the proteins of the corona, little is known about the impact of the non-protein constituents of the corona, such as sugars. Here, we investigate the role of protein glycosylation of the corona in cellular uptake. We show that deglycosylation of clusterin (CLU) and apolipoprotein AI (Apo AI) significantly changes (increases and decreases, respectively) the cellular uptake of nanocarriers covered with these proteins.


Assuntos
Apolipoproteína A-I/metabolismo , Nanopartículas/metabolismo , Coroa de Proteína/metabolismo , Animais , Glicosilação , Humanos , Camundongos , Células RAW 264.7
4.
Nanoscale ; 10(45): 21096-21105, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427359

RESUMO

Adsorption of blood proteins to the surface of nanocarriers is known to be the critical factor influencing cellular interactions and eventually determining the successful application of nanocarriers as drug carriers in vivo. There is an increasing number of reports summarizing large data sets of all identified corona proteins. However, to date our knowledge about the multiple mechanisms mediating interactions between proteins and nanocarriers is still limited. In this study, we investigate the influence of protein structure on the adsorption process and focus on the effect of heat inactivation of serum and plasma, which is a common cell culture procedure used to inactivate the complement system. As in general routine lab procedure, heat inactivation was performed at 56 °C for 30 min in order to denature heat labile proteins. When nanocarriers were exposed to native versus heat inactivated serum, we saw that the cellular uptake by macrophages was significantly affected. These results were then correlated with an altered corona composition that depended on the treatment of the protein source. In summary, we were able to prove that the protein structure is one of the key parameters determining protein corona formation.


Assuntos
Proteínas Sanguíneas/metabolismo , Coroa de Proteína/química , Animais , Proteínas Sanguíneas/química , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Clusterina/química , Clusterina/metabolismo , Eletroforese em Gel de Poliacrilamida , Temperatura Alta , Espectrometria de Massas , Camundongos , Nanopartículas/química , Poliestirenos/química , Coroa de Proteína/análise , Desnaturação Proteica , Estrutura Terciária de Proteína , Células RAW 264.7
5.
Adv Mater ; : e1802732, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30144166

RESUMO

Hard corona (HC) protein, i.e., the environmental proteins of the biological medium that are bound to a nanosurface, is known to affect the biological fate of a nanomedicine. Due to the size, curvature, and specific surface area (SSA) 3-factor interactions inherited in the traditional 3D nanoparticle, HC-dependent bio-nano interactions are often poorly probed and interpreted. Here, the first HC-by-design case study in 2D is demonstrated that sequentially and linearly changes the HC quantity using functionalized graphene oxide (GO) nanosheets. The HC quantity and HC quality are analyzed using NanoDrop and label-free liquid chromatography-mass spectrometry (LC-MS) followed by principal component analysis (PCA). Cellular responses (uptake and cytotoxicity in J774 cell model) are compared using imaging cytometry and the modified lactate dehydrogenase assays, respectively. Cellular uptake linearly and solely correlates with HC quantity (R2 = 0.99634). The nanotoxicity, analyzed by retrospective design of experiment (DoE), is found to be dependent on the nanomaterial uptake (primary), HC composition (secondary), and nanomaterial exposure dose (tertiary). This unique 2D design eliminates the size-curvature-SSA multifactor interactions and can serve as a reliable screening platform to uncover HC-dependent bio-nano interactions to enable the next-generation quality-by-design (QbD) nanomedicines for better clinical translation.

6.
Acta Biomater ; 71: 420-431, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29524674

RESUMO

The interaction of nanocarriers with blood plasma components influences the biological response, and therefore, it needs to be controlled. Whereas protein adsorption to nanocarriers has been investigated to a large extent, the role of lipid interaction for drug delivery and its biological effect is not yet clear. However, lipids represent an important constituent of blood plasma and are usually bound in the form of lipoproteins. Because already for many nanocarrier systems an enrichment of apolipoproteins in their protein corona was reported, we examine the interaction of lipoproteins with nanocarriers. If interaction occurs in terms of lipoprotein adsorption, two scenarios are possible: adsorption of intact lipoprotein complexes or disintegration of the complexes with adsorption of the single components. To investigate the interaction and clarify which scenario occurs, polymeric model nanoparticles and different lipoprotein types have been studied by isothermal titration calorimetry, transmission electron microscopy, and other methods. Our data indicate that upon contact with polymeric nanoparticles, disintegration of lipoproteins and adsorption of lipids occurs. Further, the effect of lipoprotein adsorption on cell uptake has been examined, and a major effect of the lipoproteins has been found. STATEMENT OF SIGNIFICANCE: It is now well accepted that nanomaterials developed as diagnostic or therapeutic carrier systems need to be well characterized in terms of biological responses inside an organism. Many studies have already shown that proteins adsorb to the surface of a nanomaterial and create a new interface that define the identity of the material. However, the presence of other surface-active components of the blood plasma and how they interact with nanomaterials has been much less investigated. Thus, this study aims at providing a significant contribution to understanding the interaction mechanism between lipoproteins and nanomaterials. Since lipoproteins transport a high amount of lipids, which are surface-active molecules, the demonstrated interactions can go as far as complete lipoprotein disintegration.


Assuntos
Lipoproteínas/química , Nanopartículas/química , Coroa de Proteína/química , Animais , Humanos , Camundongos , Células RAW 264.7
7.
Biochim Biophys Acta ; 1857(9): 1373-1379, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27155390

RESUMO

Diatoms possess special light-harvesting proteins involved in the photoprotection mechanism called non-photochemical quenching (NPQ). These Lhcx proteins were shown to be subunits of trimeric fucoxanthin-chlorophyll complexes (FCPa) in centric diatoms, but their mode of action is still unclear. Here we investigated the influence of Fcp6, an orthologue to Lhcx1 of Thalassiosira pseudonana in the diatom Cyclotella meneghiniana, by reducing its amount using an antisense approach. Whereas the pigment interactions inside FCPa were not influenced by the presence or absence of Fcp6, as demonstrated by unaltered spectra of circular dichroism, changes could be observed on the level of thylakoids and cells in the mutants compared to WT. This fits to recent models of NPQ in diatoms, where FCP aggregation or supramolecular reorganisation is thought to be a major feature. Thus, Fcp6 (Lhcx1) appears to alter pigment-pigment interactions inside the aggregates, but not inside (un-aggregated) FCPa itself.


Assuntos
Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/fisiologia , Tilacoides/química , Dicroísmo Circular , Complexos de Proteínas Captadores de Luz/química , Agregados Proteicos
8.
Biochim Biophys Acta ; 1837(1): 193-200, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036191

RESUMO

Diatoms are characterized by very efficient photoprotective mechanisms where the excess energy is dissipated as heat in the main antenna system constituted by fucoxanthin-chlorophyll (Chl) protein complexes (FCPs). We performed Stark fluorescence spectroscopy on FCPs in their light-harvesting and energy dissipating states. Our results show that two distinct emitting bands are created upon induction of energy dissipation in FCPa and possibly in FCPb. More specifically one band is characterized by broad red shifted emission above 700nm and bears strong similarity with a red shifted band that we detected in the dissipative state of the major light-harvesting complex II (LHCII) of plants [26]. We discuss the results in the light of different mechanisms proposed to be responsible for photosynthetic photoprotection.


Assuntos
Proteínas de Ligação à Clorofila/química , Diatomáceas/química , Complexos de Proteínas Captadores de Luz/química , Xantofilas/química , Diatomáceas/fisiologia , Metabolismo Energético , Luz , Fotossíntese , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...